ИНДУКТИВНАЯ ИЛИ ТРАНСФОРМАТОРНАЯ СВЯЗЬ

ИНДУКТИВНАЯ ИЛИ ТРАНСФОРМАТОРНАЯ СВЯЗЬ

Если энергия колебаний переходит из одного контура в другой, то такие контуры называются связанными.
Иначе говоря, контуры являются связанными в том случае когда колебания, происходящие в одном из них, воздействуют на другой контур и вызывают в нем колебательный процесс.

Чем больше энергии переходит из одного контура в другой, т.е. чем сильнее воздействует один контур на другой, тем сильнее связь между ними.

Величина связи характеризуется коэффициентом связи Ксв, который может иметь значения от 0 до 1 (от 0 до 100%). Если связь отсутствует, то ксв = 0. В радиоцепях ксв имеет обычно величину от долей процента до нескольких процентов, изредка до нескольких десятков процентов.

Существует несколько различных видов связи.

Индуктивная или трансформаторная связь. Эта связь применяется наиболее часто и образуется с помощью взаимной индукции между катушками контуров (рис.1 ).

Индуктивная связь двух колебательных контуров

Рис.1 — Индуктивная связь двух контуров

Контур L1C1, получающий энергию от генератора, называется первичным контуром. Контур L2C2, получающий энергию от первичного контура, называется вторичным контуром.

Принцип индуктивной связи заключается в там, что ток первичного контура I1, проходя через катушку L1, создает вокруг нее магнитное поле, силовые линии которого пересекают витки катушки L2 и возбуждают в ней индуктированную эдс, а последняя создает во вторичном контуре ток I2. Таким образом, при индуктивной связи энергия передается из одного контура в другой магнитным полем. Любой трансформатор является примером индуктивной связи. Две катушки, индуктивно связывающие высокочастотные контуры, называют трансформатором высокой частоты.

Индуктивная связь может быть постоянной или переменной. Постоянная индуктивная связь оформляется в виде двух однослойных или многослойных катушек, намотанных обычно на одном каркасе друг возле друга. Для переменной индуктивной связи нужно менять расстояние между катушками или их взаимное расположение. Переменную индуктивную связь изображают на схемах стрелкой, пересекающей катушки
(рис.1 а).

Выясним физический смысл коэффициента связи при индуктивной связи. Если L1 и L2 одинаковы и других катушек в контурах нет, то коэффициент связи показывает, какую долю полного магнитного потока Ф1 катушки L1 составляет магнитный поток Фсв, пронизывающий обе катушки, т.е. связывающий обе цепи. Например, если Фсв составляет 20% от Ф1, то Kсв = 0,2.

Для получения максимального тока и напряжения в контурах их настраивают в резонанс. В первичном контуре может быть либо резонанс напряжений, либо резонанс токов в зависимости от способа соединения генератора с этим контуром.

Во вторичном контуре при индуктивной связи, как правило, получается резонанс напряжений.
Это объясняется тем, что в качестве генератора во вторичном контуре работает сама катушка L2. Она включена в контур последовательно, значит, в цепи будет резонанс напряжений.

Практически связанные контуры настраивают в резонанс для получения наибольшего тока во вторичном контуре следующим порядком. Сначала настраивают первичный контур до получения максимума тока в нем, затем настраивают вторичный контур в резонанс с первичным контуром. После настройки вторичного контура надо еще раз подстроить первичный контур, так как вторичный контур при настройке несколько влияет на первичный и нарушает резонанс в нем. Вообще всякое изменение настройки одного из контуров оказывает влияние на другой контур (изменяет его настройку). Приходится дополнительно подстраивать каждый контур, чтобы восстановить резонанс.

Для настройки в резонанс двух контуров, имеющих постоянную связь, их конденсаторы переменной емкости объединяют в один агрегат, т.е. роторы насаживают на общую ось. На схемах такой агрегат показывают путем соединения стрелок конденсаторов штриховой линией (рис.1 б).

Емкости контуров выравнивают с помощью небольших надстроечных (полупеременных) конденсаторов, емкость которых можно регулировать в некоторых пределах. Они присоединяются параллельно основным конденсаторам (рис.1 б).

Индуктивности катушек выравнивают, регулируя положение находящегося внутри катушки сердечника из магнитодиэлектрика (карбонильное железо, альсифер, феррит и др). На схеме (рис.1 б) показано условное изображение сердечников.

Рассматривая работу связанных контуров, необходимо учитывать воздействие вторичного контура на первичный. Ток I2, возникший во вторичном контуре, создает в катушке L2 магнитный поток, пересекающий какой-то своей частью витки катушки L1 и индуктирующий в ней некоторую эдс. Эта эдс противодействует первичному току I1 и уменьшает его. Иначе можно сказать, что вторичный контур вносит в первичный дополнительное сопротивление, называемое вносимым сопротивлением. Когда вторичный контур настроен на частоту генератора, то он вносит в первичный контур только активное сопротивление, которое тем больше, чем сильнее связь. Величина этого сопротивления характеризует переход некоторого количества энергии из первичного контура во вторичный. А когда вторичный контур не настроен точно на частоту генератора, то он вносит в первичный контур не только активное, но и реактивное сопротивление, индуктивное или емкостное, в зависимости от того, в какую сторону расстроен вторичный контур. Таким образом, вторичный контур, будучи сам расстроенным, нарушает настройку первичного контура.

Кривые резонанса двух связных контуров при различной величине связи

Рис.2 — Кривые резонанса двух связных контуров при различной величине связи

Если у двух настроенных в резонанс связанных контуров снять зависимость тока или напряжения вторичного контура от частоты генератора, то получится кривая резонанса системы двух связанных контуров. Форма ее зависит от величины связи. Чем слабее связь, тем острее резонанс (рис.2). При увеличении связи кривая становится более тупой и, начиная с некоторого значения связи, принимает характерный двугорбый вид. Величина связи, при которой получается переход кривой резонанса от одногорбой формы к двугорбой, называется критической связью.

При одинаковых контурах ток, напряжение и мощность колебаний во вторичном контуре при критической связи имеют наибольшие значения по сравнению с их величинами при более слабой или более сильной связи. Поэтому критическую связь иначе называют оптимальной, т.е. наивыгоднейшей. Но она является наивыгоднейшей только в смысле получения наибольшей мощности во вторичном контуре.

В случае одинаковых контуров коэффициент оптимальной связи равен величине затухания каждого контура. Если, например, связанные контуры имеют каждый в отдельности S = 0,02, то оптимальная связь получится при Kсв— 0,02 = 2%.

Когда связь меньше критической, то ее считают слабой. При слабой связи кривая резонанса имеет почти такую же форму, как и в случае одиночного контура. Связь больше критической считается сильной. Если усиливать связь свыше критического значения, то провал в резонансной кривой становится больше и разница по частоте между горбами увеличивается (рис.2).

Критическая или сильная связь (при небольшом провале между горбами) дает значительное расширение полосы пропускания и используется в радиоприемных устройствах. Для сильной связи характерна передача энергии из первичного контура во вторичный с высоким кпд (выше 50%), т.е. мощность во вторичном контуре больше, чем мощность, теряемая в первичном контуре. Вследствие этого сильная связь применяется при больших мощностях в радиопередатчиках. Слабая связь применяется тогда, когда не требуется передать во вторичный контур большую мощность с высоким кпд, но зато важно, чтобы вторичный контур мало влиял на первичный. Такая связь находит себе применение в радиоизмерениях.

Ссылка на основную публикацию