Резонанс токов, или параллельный резонанс, получается в случае, когда генератор нагружен на индуктивность и емкость, соединенные параллельно, т.е. когда генератор включен вне контура (рис.1 а). Сам же колебательный контур, рассматриваемый отвлеченно от генератора, надо по-прежнему представлять себе как последовательную цепь из L и С. Не следует считать, что в схеме резонанса токов генератор и контур соединены между собой параллельно. Весь контур в целом является нагрузочным сопротивлением для генератора и поэтому генератор включен последовательно, как это и бывает всегда в замкнутой цепи.

Схема и резонансные кривые для резонанса токов. Резонанс токов в колебательном контуре.
Рис.1 — Схема и резонансные кривые для резонанса токов

Условия получения резонанса токов такие же, как и для резонанса напряжений: f =fo или xL = хC. Однако по своим свойствам резонанс токов во многом противоположен резонансу напряжений. В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе сопротивление контура между точками разветвления становится максимальным, а ток генератора будет минимальным. Полное (эквивалентное) сопротивление контура для генератора при резонансе токов Rэ можно подсчитать по любой из следующих формул

Полное (эквивалентное) сопротивление контура для генератора при резонансе токов

где L и С — в генри и фарадах, а Rэ, р и r — в омах.

Сопротивление Rэ, называемое резонансным сопротивлением, является чисто активным и поэтому при резонансе токов нет сдвига фаз между напряжением генератора и его током.

На (рис.1 б) для резонанса токов показано изменение полного сопротивления контура z и тока генератора I при изменении частоты генератора f.

В самом контуре при резонансе происходят сильные колебания и поэтому ток внутри контура во много раз больше, чем ток генератора. Токи в индуктивности и емкости IL и IС можно рассматривать как токи в ветвях или как ток незатухающих колебаний внутри контура, поддерживаемых генератором. По отношению к напряжению U ток в катушке отстает на 90°, а ток в емкости опережает это напряжение на 90°, т. е. друг относительно друга токи сдвинуты по фазе на 180°. Вследствие наличия активного сопротивления, сосредоточенного главным образом в катушке, токи IL, и IC в действительности имеют сдвиг фаз несколько меньше 180° и ток IL немного ( меньше Iс. Поэтому по первому закону Кирхгофа для точки разветвления можно написать

Ток на элементах в колебательном контуре во время резонанса

Чем меньше активное сопротивление в контуре, тем меньше разница между IC и IL, тем меньше ток генератора и тем больше сопротивление контура. Это вполне понятно. Ток, идущий от генератора, пополняет энергию в контуре, компенсируя потери ее в активном сопротивлении. При уменьшении активного сопротивления уменьшается потеря энергии в нем и генератор расходует меньше энергии на поддержание незатухающих колебаний.
Если бы контур был идеальным, то начавшиеся колебания продолжались бы непрерывно без затухания и не требовалось бы энергии от генератора на их поддержание. Ток генератора был бы равен нулю, а сопротивление контура — бесконечности.
Активная мощность, расходуемая генератором, может быть подсчитана как

Формула мощности, расходуемой генератором на восполнение потерь в колебательном контуре
или как мощность потерь в активном сопротивлении контура

Мощность потерь в активном сопротивлении контура

где I к — ток в контуре, равный IL или IC.

Для резонанса токов так же, как и для резонанса напряжений, характерно возникновение в контуре мощных колебаний при незначительной затрате мощности генератора.

На явление резонанса в параллельном контуре большое влияние оказывает внутреннее сопротивление Ri питающего генератора. Если это сопротивление мало, то напряжение на зажимах генератора, а следовательно, и на контуре незначительно отличается от эдс генератора и остается почти постоянным по амплитуде, несмотря на изменения тока при изменении частоты. Действительно, U = Е — IRi, но так как Ri величина малая, то потеря напряжения внутри генератора IRi также незначительна и U = Е.

Полное сопротивление цепи в этом случае приближенно равно только сопротивлению контура. При резонансе последнее сильно возрастает и ток генератора резко уменьшается. Кривая изменения тока на (рис.1 б) соответствует именно такому случаю.

Постоянство амплитуды напряжения на контуре также объясняет формула U = I * z. Для случая резонанса z велико, но I — величина малая, а если резонанса нет, то z уменьшается, но зато I увеличивается и произведение I*z остается примерно прежним.

Как видно, при малом Ri генератора параллельный контур не обладает резонансными свойствами в отношении напряжения: при резонансе напряжение на контуре почти не возрастает. Не будут заметно увеличиваться и токи IL И IС. Следовательно, при малом Ri генератора контур не имеет резонансных свойств и по отношению к токам в катушке и конденсаторе.

В радиотехнических схемах параллелыный контур обычно питается от генератора с большим внутренним сопротивлением, роль которого выполняет электронная лампа или полупроводниковый прибор. Если внутреннее сопротивление генератора значительно больше, чем сопротивление контура r, то параллельный контур приобретает резко выраженные резонансные свойства.

В этом случае полное сопротивление цепи приближенно равно одному Ri и почти неизменно при изменении частоты. Ток I, питающий контур, также почти постоянен по амплитуде:

Ток питающий колебательный контур

Но тогда напряжение на контуре U=I*z  при изменении частоты будет следовать за изменениями сопротивления контура z, т.е. при резонансе U резко увеличится. Соответственно возрастут токи IL и IC. Таким образом, при большом Ri генератора кривая изменения z (рис.1 б) будет в других масштабах приближенно показывать также изменение напряжения на контуре U и изменения токов IL и IC На (рис. 2) изображена подобная кривая вместе с графиком тока генератора, который в данном случае почти не меняется.

Резонансные кривые параллельного контура при большом внутреннем сопротивлении генератора

Рис.2 — Резонансные кривые параллельного контура при большом внутреннем сопротивлении генератора

Основное применение резонанса токов в радиотехнике — создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.