Подробная теория о генераторах постоянного тока


В генераторах последовательного возбуждения обмотка воз­буждения включается последовательно с обмоткой якоря, поэтому Iв=Iа=I. Следовательно, характеристику холостого хода, нагрузочные характеристики, регулировочную и характеристику короткого замыкания можно снять только по схеме генератора независимого возбуждения.

Рисунок 1 – Внешняя характеристика генератора последовательного возбуждения

Рисунок 1 – Внешняя  характеристика генератора  последовательного возбуждения

При нормальном включении обмотки возбуждения снимается только внешняя характеристика: U=f (I) при n=const (рисунок- 1, кривая 1). При холостом ходе напряжение генератора определяется потоком остаточного намагничивания. После подключения и по мере увеличения нагрузки ток Iв=I увеличивается, а следовательно увеличивается и напряжение генератора U. Вначале рост напряжения происходит линейно (машина не насыщена), а затем при достижении насыщения процесс роста напряжения замедляется и при достаточно большом значении тока I начинает уменьшаться. Это объясняется тем, что вследствие насыщения магнитной системы магнитный поток Ф практически не увеличивается, а реакция якоря и падение напряжения в цепи якоря продолжают возрастать.

Генераторы последовательного возбуждения вследствие сильной зависимости напряжения на зажимах от тока нагрузки в обычной практике не применяется.




Характеристика холостого хода U0=f (Iв) при I=0 и n=const. В процессе самовозбуждения в генераторах параллельного возбуждения Ia=Iв, причем Iв=(0,02…0,03) Iн. Поэтому можно пренебречь реакцией якоря и падением напряжения в обмотке якоря и считать, что между характеристиками холостого хода генератора параллельного возбуждения и независимого возбуждения практически нет разницы. Следует учесть, что эта характеристика может быть снята только в одном квадранте, так как процесс самовозбуждения в данном генераторе может протекать только в одном направлении при согласном действии остаточного магнитного потока и потока, создаваемого током возбуждения, причем на прямолинейном участке характеристики напряжение генератора не удается регулировать как у генератора независимого возбуждения, что определяет меньший диапазон регулирования его напряжения.

Нагрузочная характеристика U=f (Iв) при I=const и n=const. Нагрузочные характеристики генератора параллельного возбуждения практически совпадают с характеристиками генератора независимого возбуждения, так как увеличение тока Iа на величину тока возбуждения при параллельном возбуждении не может оказать заметного влияния на напряжение генератора.

Внешняя характеристика U=f (I) при rв=const и n=const (рисунок 1) показывает влияние изменения нагрузки на напряжение генератора. При этом ток возбуждения не регулируется с помощью регулировочного реостата. Следует учесть, что при независимом возбуждении

Следует учесть, что при независимом возбуждении

 а при параллельном возбуждении

ток возбуждения при параллельном возбуждении

Последнее равенство означает, что при снятии внешней характеристики ток возбуждения генератора изменяется пропорционально напряже­нию на генераторе. Таким образом, уменьшение напряжения генератора параллельного возбуждения при увеличении его нагрузки вызывается не только размагничивающим действием реакции якоря и падением напряжения в цепи якоря, но и уменьшением тока возбуждения. Поэтому внешняя характеристика генератора параллельного возбуждения (рисунок 1 ) (кривая 1) располагается ниже внешней характеристики генератора независимого возбуждения (кривая 2).

Внешние характеристики генератора.

В генераторе параллельного возведения ток нагрузки I будет увеличиваться только до определенного критического значения Iкр=(2...2,5) Iн, после чего он начнет уменьшаться до Iко< Iн. Действительно , т.е. ток зависит от двух факторов — напряжения генератора U и сопротивления нагрузки rн. Уменьшение сопротивления rн ведет к увеличению тока I, а это приводит к уменьшению напряжения U по вышеуказанным причинам. Вначале, пока генератор насыщен, магнитный поток Ф при уменьшении тока возбуждения спадает не очень значительно. По этой причине и напряжение падает сначала медленно.

Сопротивление rнв этот период снижается быстрее, чем напряжение U, и ток I растет. По мере увеличения тока I сверх номинального, напряжение U начинает уменьшаться быстрее, т.к. генератор переходит в ненасыщенное состояние (на прямолинейных участках характеристики холостого хода) и поток Ф начинает спадать пропорционально уменьшению тока возбуждения. Наступает момент, когда уменьшение напряжения опережает уменьшение rн и ток I, достигнув критического значения Iкр, начинает уменьшаться (рисунок 1 ), пунктирная часть кривой I). Начиная с точки a , дальнейшее уменьшение rн не вызывает увеличения тока I, а наоборот, происходит его уменьшение, т.к. напряжение U падает быстрее, чем сопротивление rн. При коротком замыкании U=0, Iв=0 и ток Iко определяется только потоком остаточ­ного намагничивания. Таким образом, короткое замыкание, вызванное постепенным уменьшением сопротивления нагрузки, не опасно для генераторов параллельного возбуждения. Однако, при внезапном ко­ротком замыкании ток успевает достигнуть значений Iкз=(8…15) Iн. Это обусловлено значительной индуктивностью обмотки возбуждения (большая постоянная времени обмотки), что приводит к постепенному уменьшению тока возбуждения Iв и процесс уменьшения магнитного потока происходит значительно медленнее, чем процесс нарастания тока в цепи якоря. Поэтому для защиты генераторов параллельного возбуждения от токов короткого замыкания необходимы быстродействующие автоматические выключатели, как и для генераторов независимого возбуждения.

Регулировочная характеристика Iв=f (I) при n=const и U=const снимается так же как и для генератора независимого возбуждения и практически получается такой же, как и при независимом возбуждении, т.к. ток возбуждения очень мал и падение напряжения Iвraв цепи якоря от тока возбуждения также очень мало и не оказывает заметного влияния на напряжение генератора.

Характеристика короткого замыкания Iк=f (Iв) при n=const и U=0 может быть снята только при питании обмотки возбуждения от постороннего источника, т.к. при самовозбуждении при U=0 ток возбуждения Iв=0.



теги:


Генераторы параллельного возбуждения.

Условия самовозбуждения генератора.

В генераторах с самовозбуждением, а к ним относится и генератор параллельного возбуждения, обмотки возбуждения получают питание непосредственно от якоря самого генератора, при этом посторонний источник питания им не требуется.

Самовозбуждение генератора возможно при выполнении трех условий:

1) наличие потока остаточного намагничивания полюсов Фост;

2) согласное направление магнитного потока остаточного намагничивания и магнитного потока, создаваемого обмоткой возбуждения генератора;

3) сопротивление цепи возбуждения rв должно быть ниже некоторого критического значения, а частота вращения должна быть не ниже номинального значения.

В электрической машине практически всегда существует небольшой, порядка (2...5)% от номинального, поток остаточного намагничивания. Если в генераторе такой поток отсутствует, то необходимо его намагнитить, пропустив ток по обмотке возбуждения от постороннего источника.

Если привести якорь генератора во вращение с частотой, равной номинальной, то под действием потока остаточного намагничивания в обмотке якоря возникает небольшая ЭДС Eостеост   равная (2...5)% от Uн.

Под действием этой ЭДС по цепи возбуждения потечет ток, который создает добавочный поток намагничивания Фдоб. Ток, создающий Фдоб, равен

Под действием этой ЭДС по цепи возбуждения потечет ток, ко-торый создает добавочный поток намагничивания Фдоб. Ток, создаю-щий Фдоб, равен

где rв=rрв+rшо; rрв — сопротивление регулировочного реостата; rшо — сопротивление параллельной обмотки возбуждения; rа — сопротивление цепи якоря.

В зависимости от направления тока Iв в обмотке возбуждения поток Фдоб  может быть направлен либо встречно относительно Фоcт, либо согласно с ним. При встречном направлении Фост и Фдоб  процесс самовозбуждения идти не будет, т.к. не выполняется второе условие. В этом случае необходимо поменять направление тока Iв , переключив концы питания обмотки возбуждения. Если потоки направлены согласно, то развивается процесс самовозбуждения, который можно представить в виде следующий логической схемы

Если потоки направлены согласно, то развивается процесс самовозбуждения, который можно представить в виде следующий логической схемы

При выполнении двух первых условий процесс самовозбуждения будет развиваться до определенного предела. Этот предел зависит от сопротивления цепи возбуждения rв, вида ее вольт-амперной характеристики и вида характеристики холостого хода. На рисунке-1., представлены характеристики холостого хода (1) при частоте вращения генератора n1, и (2) при частоте вращения n2 >n1, и вольтамперные характеристики цепи возбуждения генератора (3-6) при различных углах a.

Условия самовозбуждения генератора параллельного возбуждения

Рисунок-1 – Условия самовозбуждения генератора параллельного возбуждения

Определим предел, до которого идет процесс самовозбуждения. При этом считаем, что генератор работает на холостом ходу, т.е. I=0.

При самовозбуждении Iв≠const и следовательно уравнение ЭДС может быть написано в двух вариантах следующим образом

уравнение ЭДС может быть написано следующим образом

где Uв — напряжения возбуждения, равные изменяющемуся напряжению U на генераторе; Iв — ток возбуждения; rв — сопротивление цепи возбуждения ; Lв — индуктивность цепи возбуждения.

Так как rв=const, то напряжение Iвrв изменяется прямо пропорционально току Iв. Графически эта зависимость выражается прямой (3) (рисунок — 1), выходящей из начала координат под углом a, причем

напряжение изменяется прямо пропорционально току. Графически эта зависимость выражается прямой (3) (рисунок 1), выходящей из начала координат под углом альфа, причем уго альфа считается по формуле

следовательно, каждому значению rв соответствует определенная характеристика цепи возбуждения, выходящая из начала координат под углом, определяемым формулой.

При работе генератора на холостом ходу ток Iв мал, поэтому можно считать, что Iara≈0, тогда из уравнения равновесия ЭДС следует, что U=Ea и зависимость изменения напряжения на зажимах генератора определяется характеристикой холостого хода (кривая I). Отрезки ординат между кривой 1 и линией 3 дают разность

служат мерой интенсивности происходящего процесса самовозбуждения, т.е. скорости изменения тока возбуждения

и служат мерой интенсивности происходящего процесса самовозбуждения, т.е. скорости изменения тока возбуждения. Очевидно, что этот процесс окончится тогда, когда разность

когда разность станет равной нулю

станет равной нулю, т.е. установившееся значение тока Iв определяется точкой А пересечения характеристик 1 и 3.

Если увеличить rв, то вольтамперная характеристика пойдет круче и примет положение 4. Процесс самовозбуждения в этом случае замедляется и заканчивается в точке А1 при меньшем напряжении на генераторе. При дальнейшем увеличении rв  получим прямую 5, каса­тельную к начальной части характеристики холостого хода. Значение rв, соответствующее прямой 5, называется критическим (rвкр). При сопротивлении цепи обмотки возбуждения, равной и большей rвкр (кривая 6) генератор практически не возбуждается.

Если изменять частоту вращения генератора, то вид характеристики холостого хода меняется (кривая 2), следовательно, величина критического сопротивления rвкр зависит также от частоты вращения генератора. Большей частоте вращения генератора соответствует большее значение критического сопротивления rвкр.




Характеристика холостого хода. Определяет зависимость напряжения U0 от тока возбуждения при Iа=0 и n=const.  Для снятия этой характеристики собирается схема, показанная на рис. 1. Выключатель «Р» отключен, генератор разгоняется до номинальной частоты вращения, снятие характеристики начинают с Iв=0. При этом, ввиду наличия магнитного потока остаточного намагничивания, в проводниках обмотки якоря индуктируется ЭДС Еост, величина которой обычно составляет (2…3)% от Uн генератора.

При увеличении тока в обмотке возбуждения от нуля до максимального значения, напряжение генератора возрастает по кривой 1.

Схема для снятия характеристики холостого хода и Характеристика холостого хода генератора независимого возбуждения

 Обычно ток возбуждения увеличивают до тех пор, пока напряжение на зажимах генератора не достигнет значения (1,1…1,25) Uн. Затем ток возбуждения уменьшают до нуля, изменяют его направление на обратное и вновь увеличивают до Iв= — Iвmax..  Напряжение при этом изменяется от +Umax до -Umax по кривой 2, которая называется нисходящей ветвью. Кривая 2 проходит выше кривой I, что объясняется процессами перемагничивания магнитной цепи. Далее изменяют ток возбуждения от -Iвmaxдо +Iвmax, при этом напряжение меняется от -Umax до +Umaxпо кривой 3, так называемой восходящей ветвью характеристики холостого хода. Кривые 2 и 3 образуют петлю гистерезиса, которая определяет свойства стали магнитной цепи машины. Проведя между ними среднюю линию 4, получают так называемую расчетную характеристику холостого хода, которой пользуются на практике.

Следует отметить, что при снятии характеристики холостого хода изменять ток возбуждения нужно только в одном направлении, чтобы точки принадлежали одной ветви.

Анализ характеристики холостого хода показывает, что начальная часть кривой представляет собой практически прямую линию, так как при малых токах Iвпочти вся МДС идет на преодоление магнитного сопротивления воздушного зазора. По мере увеличения тока Iви возрастания потока Ф сталь магнитопровода насыщается и зависимость U0= f (Iв) становится нелинейной.

Точка, соответствующая напряжению Uн, лежит обычно на перегибе характеристики холостого хода. Это связано с тем, что при работе на прямолинейном участке характеристики напряжение генератора неустойчиво, а в насыщенной части кривой ограничены возможности регулирования напряжения генератора. Таким образом характеристика холостого хода имеет важное значение для оценки свойств генератора.

Нагрузочные характеристики генератора независимого возбуждения

Рис.3 — Нагрузочные характеристики генератора независимого возбуждения

Нагрузочные характеристики. Определяют зависимости напряжения от тока возбуждения при Iа=const и n=const. Схема для снятия этих характеристик та же, что и для снятия характеристики холостого хода, но в этом случае к генератору подключена нагрузка и по цепи якоря проводит постоянный по величине ток, а напряжение генератора меньше ЭДС вследствие 2-х причин — падения напряжения в цепи якоря   IaΣr и размагничивающего действия реакции якоря. Поэтому все нагрузочные характеристики расположены ниже расчетной характеристики холостого хода (рисунок 2.4). Можно считать, что характеристика холостого хода есть частный случай нагрузочной характеристики при I = 0. Обычно нагрузочную характеристику снимают при Iа = Iн.

Внешняя характеристика. Определяет зависимость напряжения генератора U от тока нагрузки I, т.е. U=f (I) при n=const и Iв=const, что при  независимом возбуждении равносильно условию rв=const .

Внешняя характеристика генератора снимается по схеме рис. 4.

Сначала доводят скорость генератора до номинальной частоты вращения, и возбудив генератор, нагружают его до номинальной нагрузки. При этом устанавливают такой ток возбуждения Iв=Iвн, чтобы при токе нагрузки I=Iн напряжение на генераторе было равно номинальному Uн. Затем постепенно уменьшают нагрузку до нуля и снимают показания приборов. По мере уменьшения нагрузки напряжение на генераторе будет возрастать по двум причинам — из-за уменьшения падения напряжения в цепи обмотки якоря Iа∑r и уменьшения размагничивающего действия реакции якоря. При переходе к холостому ходу (I=0) напряжение возрастает на величину DUн (рис. 5), которая называется номинальным изменением напряжения генератора и определяется по формуле:

Номинальным изменением напряжения генератора

Схема для снятия внешней характеристики и Внешние характеристики генератора

ГОСТ регламентирует величину изменения напряжения генератора (у генераторов независимого возбуждения

DUн =(5...10)% ).При коротком замыкании генератора, т.е. уменьшении сопротивления нагрузки до нуля, напряжение на его зажимах падает до нуля (U=0), а ток короткого замыкания во много раз превосходит номинальный Iкз=(6…15) Iн. Поэтому режим короткого замыкания для генераторов независимого возбуждения является очень опасным, особенно для коллектора и щеточного аппарата из-за возможности возникновения сильного искрения или кругового огня.

Регулировочная характеристика. Определяет зависимость тока возбуждения Iв от тока нагрузки I, т.е. Iв=f (I) при n=const и U=const (рис. 6).

Регулировочная характеристика генератора

Рис. 6 — Регулировочная характеристика генератора

Регулировочная характеристика показывает, как надо изменять ток возбуждения, чтобы при изменении нагрузки напряжение на генераторе оставалось неизменным по величине.

 

С увеличением нагрузки ток возбуждения необходимо увеличивать чтобы скомпенсировать увеличение падения напряжения на обмотке якоря Iar и размагничивающее действие реакции якоря. При переходе от холостого хода к номинальной нагрузке увеличение тока возбуждения составляет (10…15)%.

Характеристика короткого замыкания. Определяет зависимость тока цепи якоря I от тока возбуждения I=f (Iв) при U=0 и n=const Для снятия этой характеристики зажимы генератора замыкают накоротко, разгоняют генератор до номинальной частоты вращения и увеличивая ток возбуждения от нуля доводят ток якоря до Iкз=(1,25...1,5)Iн.

Характеристика короткого замыкания

Рис. 7 — Характеристика короткого замыкания.

По полученным данным строят характеристику короткого замыкания (рис.7). Эта характеристика носит вспомогательный характер и при испытании генератора обычно не снимается.



Стр. 2 из 3123


radionet